AI Control Plane for LLM Reliability
Make sure your AI delivers exactly what you envisioned with Qualifire’s state-of-the-art evaluation, guardrails and controls platform



Evaluations
Observability
Realtime policy enforcement
Guardrails
Prompt management
Data curation


Trusted by Leading AI Innovators

Product Capabilities
Instruction Following
Custom Assertions
Grounding
Customized evaluations
SOTA models purposely built to evaluate your LLM application
Real time enforcement
Detect and block unwanted AI behaviours for Chatbots, RAG and multi agent application

Prompt management
Streamline prompt engineering with safety and quality built in
Tracing and observability using OTEL
Monitor, evaluate and control multi agent applications

Contact us

Easy Integration
OpenAI V4+
JS OpenAI
Python OpenAI
from openai import OpenAI
client = OpenAI(
api_key=os.environ[“OPENAI_API_KEY”],
base_url=”https://proxy.qualifire.ai/api/providers/opeai”,
default_headers={
”X-Qualifire-Api-Key”: f”{os.environ[‘QUALIFIRE_API_KEY’]}”,
},
)
api_key=os.environ[“OPENAI_API_KEY”],
base_url=”https://proxy.qualifire.ai/api/providers/opeai”,
default_headers={
”X-Qualifire-Api-Key”: f”{os.environ[‘QUALIFIRE_API_KEY’]}”,
},
)
import qualifire
client = qualifire.client.Client(
api_key=”YOUR API KEY”,
)
client = qualifire.client.Client(
api_key=”YOUR API KEY”,
)
res = client.evaluate (
input=”what is the capital of France”,
output=”Paris”,
prompt_injections=”True”,
pii_check=”True”,
hallucinations_check=”True”,
grounding_check=”True”,
consistency_check=”True”,
assertions=”don\’t give medical advice’”,
dangerous_content_check=”True”,
harassment_check=”True”,
hate_speech_check=”True”,
sexual_content_check=”True”,
)
input=”what is the capital of France”,
output=”Paris”,
prompt_injections=”True”,
pii_check=”True”,
hallucinations_check=”True”,
grounding_check=”True”,
consistency_check=”True”,
assertions=”don\’t give medical advice’”,
dangerous_content_check=”True”,
harassment_check=”True”,
hate_speech_check=”True”,
sexual_content_check=”True”,
)
Our Models
Our research team has developed several cutting-edge detection models trusted by developers and organizations around the globe
Sentinel
SOTA jailbreak detection
0.980
F1-Score
~20ms
latency
Cleric
SOTA unsafe content detection
0.874
F1-Score
~35ms
latency
Paladin
Content grounding evaluation
98.2%
Bacc
~70ms
latency
We’re Making an Impact
Contact us